
Chapter Three
Systems of Linear Differential Equations

In this chapter we are going to consider systems of first order ordinary differential equations.
These are systems of the form

x1
� �t� � a11x1�t� � a12x2�t� � � � a1nxn�t�

x2
� �t� � a12x1�t� � a22x2�t� � � � a2nxn�t�

�

xn
� �t� � an1x1�t� � a12x2�t� � � � annxn�t�.

Here x1�t�,� , xn�t� are all unknown functions of t and the coefficients aij are all constant.
We can express this system in matrix notation as

d
dt

x1�t�

�

xn�t�

�

a11 a1n

�

an1 ann

x1�t�

�

xn�t�

or
d
dt

X��t� � �A�X��t�

In addition, there may be an initial condition to satisfy,

x1�t0�

�

xn�t0�

�

d1

�

dn

i.e., X��t0� � d�

Solving these systems will require many of the notions developed in the previous chapter.

3.1 Solution Methods for Linear Systems
Consider the initial value problem for the linear system

d
dt

X��t� � �A�X��t� �1. 1�

X��0� � d�

Suppose the n by n matrix, A, has real eigenvalues �1, . . . ,�n with corresponding linearly
independent eigenvectors E�1, . . . , E�n. Then the general solution to the system of equations is
given by

X��t� � C1e�1tE�1 �. . .�Cne�ntE�n �1. 2�

where C1, . . . , Cn denote arbitrary constants. We will show in a moment how this solution
was found but first, let us check that it does solve the equation. For each j, 1 � j � n, note
that, d

dt �e
�jt� � � je�jt and AE� j � � jE� j. Then
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d
dt

X��t� � C1e�1t�1E�1 �. . .�Cne�nt�nE�n

and

�A�X��t� � A C1e�1tE�1 �. . .�Cne�ntE�n

� C1e�1tAE�1 �. . .�Cne�ntAE�n

� C1e�1t�1E�1 �. . .�Cne�nt�nE�n

Clearly then, the solution �1. 2� satisfies equation �1. 1�. We will now show how this solution
is found.

Theorem 1.1 Suppose the n by n matrix A has real eigenvalues �1, . . . ,�n with
corresponding linearly independent eigenvectors E�1, . . . , E�n. Then the general solution of
�1. 1� is given by �1. 2�

Proof- Since the eigenvectors are linearly independent, the n by n matrix P � E�1, . . . , E�n

whose columns are the eigenvectors, has rank equal to n. Then by theorem 2.2.3 there
exists a matrix P�1 such that PP�1 � P�1P � I. In addition,

AP � AE�1, . . . , AE�n

� �1E�1, . . . ,�nE�n

� PD

where D � diag��1, . . . ,�n � denotes the diagonal matrix whose diagonal entries are the
eigenvalues. Now write equation �1� as

d
dt

X��t� � �A�PP�1X��t�.

Then

P�1 d
dt

X��t� � P�1�A�PP�1X��t�.

Now P and P�1 are constant matrices so

P�1 d
dt

X��t� � d
dt

�P�1X��t��

and if we let Y��t� � P�1X��t�, then our equation reduces to
d
dt

Y��t� � P�1�A�PY��t�.

But AP � PD and so P�1�A�P � P�1PD � D and our equation reduces further to
d
dt

Y��t� � DY��t�.

That is,

d
dt

y1�t�

�

yn�t�

�

�1y1�t�

�

�nyn�t�

This system is uncoupled since each equation in the system contains a single unknown
function. The uncoupled system is easily solved to find
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Y��t� �

y1�t�

�

yn�t�

�

C1e�1t

�

Cne�nt

.

Then since Y��t� � P�1X��t�,

X��t� � PY��t�

� y1�t�E�1 �. . .�yn�t�E�n

� C1e�1tE�1 �. . .�Cne�ntE�n

which is what we were supposed to prove.�

Corollary 1.1- The unique solution to the initial value problem �1� is found by choosing the
arbitrary constants Ci to be the unique solution of the system of algebraic equations PC� � d�,
where C� � �C1, . . . , Cn ��. If the eigenvectors are mutually orthogonal then the arbitrary
constants are given by

Ci �
d� 	 E� i

E� i 	 E� i

i � 1, . . . , n

Proof- It follows from �2� that X��0� � PY��0� � d� if C1E�1 �. . .�CnE�n � d�. But recalling section
2.2.4, we see PC� � C1E�1 �. . .�CnE�n .

If the eigenvectors are mutually orthogonal then the arbitrary constants can be found
more easily by noting that if

C1E�1 �. . .�CnE�n � d�

then for any i 1 � i � n,

d� 	 E� i � �C1E�1 �. . .�CnE�n� 	 E� i

� C1E�1 	 E� i �. . .�CnE�n 	 E� i

But E� i 	 E� j � 0 if i � j so

C1E�1 	 E� i �. . .�CnE�n 	 E� i � CiE� i 	 E� i

Since the E� i
�s are eigenvectors E� i 	 E� i � 0 and the result is proved.�

For each i, 1 � i � n, e�itE� i is a vector valued function of t that satisfies the system �1�.
These n functions are said to be linearly dependent if there exist constants C1, . . . , Cn, not all
zero, such that C1e�1tE�1 �. . .�Cne�ntE�n � 0� for all t. If the n functions are not linearly
dependent, they are said to be linearly independent. Since the vectors E�1, . . . , E�n are linearly
independent vectors, it is clear that e�1tE�1, . . . , e�ntE�n are linearly independent as functions.
Thus the system �1� has n linearly independent solutions.

Examples
1. To illustrate the use of theorem 1.1, we are going to consider the diffusion of a
contaminant in a 1-dimensional medium. Assume the medium is a long channel in which
the contaminant can travel from left to right or right to left but there is no diffusion in the the
transverse direction. We will think of the channel as being divided into a number of cells
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with the cells being separated from one another by faces. The cells are numbered,
1 � k � n, with cell k to the right of cell k � 1 and to the left of cell k � 1. The faces bounding
cell k are numbered as face k on the left of cell k and face k � 1 on the right side of cell k. If
we let uk�t� denote the concentration level in cell k at time t, then conservation of
contaminant is expressed as follows,

duk�t�
dt

� flow in � flow out

where flow in and flow out are the rates of mass flow through face k and face k � 1,
respectively. If we assume that Fk, the mass flow rate across face k is proportional to the
concentration gradient across face k, then we can write

Fk � Dk�uk�t� � uk�1�t��

where Dk denotes the material dependent proportionality constant known as the coefficient
of diffusion. Then we have the following equation for the concentration in cell k

duk�t�
dt

� Dk�uk�1�t� � uk�t�� � Dk�1�uk�t� � uk�1�t��

� Dkuk�1�t� � �Dk � Dk�1 �uk�t� � Dk�1uk�1�t�

If the channel is comprised of n cells then there are n ODE’s for the n unknown
concentrations un�t�. For simplicity of the example, let us suppose n � 3 and that the ends
of the channel are sealed so the contaminant can move within the channel but it can not
escape at the ends. This amounts to assuming that D1 � D4 � 0. Then the equations we
must solve are as follows

du1�t�
dt

� �D2u1 � D2u2

du2�t�
dt

� D2u1 � �D2 � D3�u2 � D3u3

du3�t�
dt

� D3u2 � D3u3

If we make the additional assumption that D2 � D3 � 1, then the system of equations in
matrix notation, becomes

d
dt

u1�t�

u2�t�

u3�t�

�

�1 1 0

1 �2 1

0 1 �1

u1�t�

u2�t�

u3�t�

.

Finally, let us assume that in the initial state, the concentration in cell 3 is 1 (saturated) and
the concentration in cells 1 and 2 is zero (no contaminant). Then

u1�0�

u2�0�

u3�0�

�

0

0

1

.

In order to find the general solution of this system, we first find the eigenvalues and
eigenvectors for the coefficient matrix. Proceeding as we did in the previous chapter, we
find

4



�1 � 0 E�1 �

1

1

1

; �2 � �1 E�2 �

�1

0

1

; �3 � �3 E�3 �

1

�2

1

Since the coefficient matrix is symmetric, the eigenvalues are all real and the eigenvectors
are mutually orthogonal. Now theorem 1.1 asserts that the general solution to this system is

u��t� � C1e�1tE�1 � C2e�2tE�2 � C3e�3tE�3

� C1

1

1

1

� C2e�t

�1

0

1

� C3e�3t

1

�2

1

We must now find values for C1, C2 and C3 so that the initial condition is satisfied. That is,

C1

1

1

1

� C2

�1

0

1

� C3

1

�2

1

�

0

0

1

.

In general we would have to solve this system of algebraic equations in order to determine
the Ci

�s but since the eigenvectors are mutually orthogonal, we have

C1

1

1

1

	

1

1

1

�

0

0

1

	

1

1

1

or 3C1 � 1

Similarly, we find
2C2 � 1

and 6C3 � 1

Then the unique solution of the initial value problem is

u��t� � 1
3

1

1

1

� 1
2

e�t

�1

0

1

� 1
6

e�3t

1

�2

1

�

1
3 � 1

2 e�t � 1
6 e�3t

1
3 � 1

3 e�3t

1
3 � 1

2 e�t � 1
6 e�3t

If we plot the concentrations in the three cells versus t for 0 � t � 5, we see that the
concentrations in cells 1 and 2 are nearly indistinguishable from each other and that the
concentration in cell 3 drops from 1 to 1/3 while the concentrations in the other two cells
increase to 1/3. That is, the concentration becomes the same in all three cells, which is
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what we would expect to happen if the ends of the channel are sealed.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

time t

u(t)

Channel with sealed ends

If we assume Dk � 1 for all five faces and the concentration to the left of cell 1 and to the
right of cell 3 are equal to zero, this amounts to supposing that the contaminant can escape
from the channel and that both ends of the channel are contaminant free. In this case the
coefficient matrix changes to

��D1 � D2� D2 0

D2 ��D2 � D3� D3

0 D3 ��D3 � D4�

�

�2 1 0

1 �2 1

0 1 �2

and now the eigenvalues and eigenvectors are

�1 � 2 � 2 E�1 �

1

2

1

�2 � �2 E�2 �

�1

0

1

�3 � � 2 � 2 E�3 �

1

� 2

1

The general solution of the system is now equal to
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u��t� � C1e 2 �2 t

1

2

1

� C2e�2t

�1

0

1

� C3e � 2 �2 t

1

� 2

1

The unique solution to the initial value problem now becomes

u��t� � 1
4

e 2 �2 t

1

2

1

� 1
2

e�2t

�1

0

1

� 1
4

e � 2 �2 t

1

� 2

1

�

1
4 e 2 �2 t � 1

2 e�2t � 1
4 e � 2 �2 t

2 1
4 e 2 �2 t � 1

4 e � 2 �2 t

1
4 e 2 �2 t � 1

2 e�2t � 1
4 e � 2 �2 t

We can see from the plot that now the concentration in all three cells tends to zero as t
tends to infinity, which means that all the contaminant eventually leaves the channel. Note
that as u3 decreases, u2 at first increases, followed by u1. This is because the contaminant
flowing out of cell 3 flows first into cell 2 and then from cell 2 into cell 1. Eventually, all the
contaminant flows out of the channel.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

time t

u(t)

Channel with open ends

Notice that in both of these two examples the coefficient matrices were symmetric. This was
not a coincidence. When the differential equations in the model are derived from a
conservation principle (in this case it is the conservation of contaminant) the coefficient
matrix will be symmetric. Since many of the mathematical models leading to systems of
linear ODE’s are derived from conservation laws, it is not unusual to have symmetric
coefficient matrices and correspondingly mutually orthogonal eigenvectors.

2. Let us now consider an example of an initial value problem where the coefficient matrix is
not symmetric; e.g.
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d
dt

u1�t�

u2�t�

u3�t�

�

�2 1 0

0 �3 1

0 1 �4

u1�t�

u2�t�

u3�t�

,

u1�0� u2�0� u3�0�
�

� 1
2

1
2 1

�

Proceeding as in the previous chapter, we find

�1 � �2, E�1 �

1

0

0

; �2 � �3, E�2 �

�1

1

1

; �3 � �4, E�3 �

0

0

1

and since the matrix is not symmetric but the eigenvalues are distinct, the eigenvectors are
linearly independent but not mutually orthogonal. The general solution to the system is

u��t� � C1e�1tE�1 � C2e�2tE�2 � C3e�3tE�3

� C1e�2t

1

0

0

� C2e�3t

�1

1

1

� C3e�4t

0

0

1

If we assume the same initial condition as in the previous examples, then in order to find the
values for Ci, we have to solve the following system of algebraic equations

1 �1 0

0 1 0

0 1 1

C1

C2

C3

�

1
2

1
2

1

Then C2 � C3 � 1
2 and C1 � 1. The unique solution to the initial value problem is then

u��t� � e�2t

1

0

0

� 1
2

e�3t

�1

1

1

� 1
2

e�4t

0

0

1

�

e�2t � 1
2 e�3t � 1

2 e�4t

1
2 e�3t

1
2 e�3t � 1

2 e�4t

Exercises
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Let A1 �
1 3

0 2
, A2 �

1 1

0 2
, A3 �

1 1 0

0 2 1

0 0 3

, A4 �

1 2 0

2 1 0

0 0 2

1. Solve d
dt

X��t� � A1X��t� X��0� �
2

�2

2.Solve d
dt

X��t� � A2X��t� X��0� �
2

�2

3. Solve d
dt

X��t� � A3X��t� X��0� �

2

1

�1

4. Solve d
dt

X��t� � A4X��t� X��0� �

2

1

�1

3.2 Complex Eigenvalues
In the previous section, we have considered first order systems or linear ODE’s where the
coefficient matrix had real eigenvalues. In this section we will see how to modify the
approach slightly in order to accommodate matrices with complex eigenvalues. We could
treat the case of complex eigenvalues and eigenvectors exactly as we handled the real
valued case but then the solutions to the system of ODE�s would be complex valued. In
most applications, we would prefer to have real valued solutions and in order to achieve this
we will proceed as follows. If the matrix A has a complex eigenvalue � � � � i�, with
corresponding eigenvector E� � u� � iv�, ( E� will then have complex entries), then the
conjugate of � will also be an eigenvalue for A and the corresponding eigenvector will be the
conjugate of E�. The conjugate eigenvalue and eigenvector will be denoted by
�� � � � i�, and E�� � u� � iv�, respectively. Now e�tE� and e�� tE�� are two linearly independent
solutions to the original system. However, recall that, e i�t � cos�t � i sin�t and hence,

e�tE� � e���i��t�u� � iv��

� e�t�cos�t � i sin�t��u� � iv��

� e�t cos�t u� � sin�t v� � ie�t cos�t v� � sin�t u�

� U��t� � iV��t�

It is clear that both U��t� and V��t� are solutions to the original system since
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d
dt

�e�tE�� � d
dt

U��t� � i d
dt

V��t�

A e�tE� � AU��t� � iAV��t�

so d
dt

U��t� � i d
dt

V��t� � AU��t� � iAV��t�

Moreover, U��t� and V��t� are real valued and linearly independent. Thus, if we prefer to have
real valued solutions to the system of ODE’s, we can replace the complex valued solutions
e�tE� and e�� tE�� with the real valued solutions U��t� and V��t�.

Examples
1. Consider the system

d
dt

x1�t�

x2�t�
�

0 1

�2 2

x1�t�

x2�t�

The eigenvalues for A are � � 1 � i. To find the eigenvector E� corresponding to � � 1 � i, we
write

A � �1 � i�I �
�1 � i 1

�2 1 � i

which implies that E� � �e1, e2 �� with ��1 � i�e1 � e2 � 0. That is, e2 � �1 � i�e1 and
E� � �1, 1 � i��. Note that there was no need to employ the second equation in �A � �I�E� � 0�,
since it must contain the same information as the first equation. Now a complex valued
solution to the system is given by

X��t� � e�1�i�t
1

1 � i

If we prefer to have real valued solutions we note that

X��t� � e t�cos t � i sin t�
1

1
� i

0

1

� e t cos t
1

1
� sin t

0

1
� ie t cos t

0

1
� sin t

1

1

� e t
cos t

cos t � sin t
� ie t

sin t

cos t � sin t

Hence

U� 1�t� � e t
cos t

cos t � sin t
and U� 2�t� � e t

sin t

cos t � sin t

are two linearly independent real valued solutions for the system. The general real valued
solution is then given by
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X��t� � C1e t
cos t

cos t � sin t
� C2e t

sin t

cos t � sin t

2. Consider

d
dt

x1�t�

x2�t�

x3�t�

�

1 3 0

�3 1 0

0 0 4

x1�t�

x2�t�

x3�t�

In one of the examples of the previous chapter, we found the real eigenpair
�1 � 4, E�1 � �0, 0, 1�� and complex eigenvalues � � 1 � 3i with complex eigenvectors

E�� � �1,�i, 0��. Then

X��t� � e�1�3i�t

1

�i

0

is a complex valued solution for the system. A corresponding pair of real valued solutions is
found from

X��t� � e t�cos3t � i sin 3t�

1

0

0

� i

0

�1

0

� e t cos3t

1

0

0

� sin 3t

0

�1

0

� ie t sin 3t

1

0

0

� cos3t

0

�1

0

� e t

cos3t

sin 3t

0

� ie t

sin 3t

�cos3t

0

That is,

U� 1�t� � e t

cos3t

sin 3t

0

and U� 2�t� � e t

sin 3t

�cos3t

0

are two linearly independent real valued solutions for the system. The general solution is
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X��t� � C1e4t

0

0

1

� C2e t

cos3t

sin 3t

0

� C3e t

sin 3t

�cos3t

0

�

C2e t cos3t � C3e t sin 3t

C2e t sin 3t � C3e t cos3t

C1e4t

Exercises
In each problem, find the real valued general solution and then find a particular solution
which satisfies the initial condition.

1. d
dt

X��t� �
1 4

�1 1
X��t� X��0� �

3

�2

2. d
dt

X��t� �
4 2

�5 2
X��t� X��0� �

�3

2

3. d
dt

X��t� �

2 0 0

0 1 4

0 �1 1

X��t� X��0� �

3

0

2

4. d
dt

X��t� �

2 0 0

0 2 3

0 �3 2

X��t� X��0� �

1

0

1

5. d
dt

X��t� �

2 0 3

0 1 0

�3 0 2

X��t� X��0� �

�1

0

2

3.3 Exponential of an n � n matrix A
In the first section of the first chapter, we learned that the solution of the scalar initial value
problem, x ��t� � Ax�t�, x�0� � x0, where A denotes a real number, is x�t� � eAtx0 for any
constant x0. We will learn in this section that this is also the solution when x�t� and x0 are
vectors in Rn and A is an n by n matrix. But first we must explain how to interpret eAt when A
is an n by n matrix.

For any real number x, the exponential function ex can be defined as follows

ex � 1 � x � 1
2!

x2 � 1
3!

x3 �. . . �3. 1�

For an n � n matrix A, we can define

12



eA � I � A � 1
2!

A2 � 1
3!

A3 �. . . �3. 2�

In the special case that A is a diagonal matrix

A �

�1 0

�

0 �n

� diag��1, . . . ,�n �

then �3. 2� implies that

eA �

e�1 0

�

0 e�n

� diag�e�1 , . . . , e�n �

We must collect a few facts about the exponential of a matrix.

 For any real numbers a and b, ea�b � eaeb but for n � n matrices A and B

eA�B � eAeB if and only if AB � BA


 For any n � n matrix A, eA is invertible and the inverse is given by
�eA��1

� e�A � I � A � 1
2! A2 � 1

3! A3 �. . . (i.e., eA is invertible for any A ).


 If I denotes the n � n identity matrix, then e tI � e tI, and for any n � n matrix A,
e0A � I.

Now we can state and prove,
Theorem 3.1- For any n � n matrix A,the unique solution of the initial value problem

X�
�
�t� � AX��t�, X��0� � v�

is given by X��t� � e tAv�.

Proof-

e tAv� � v� � tAv� � t2

2!
A2v� � t3

3!
A3v� �. . .

d
dt

�e tAv�� � 0 � Av� � tA2v� � t2

2!
A3v� �. . .

� A v� � tAv� � t2

2!
A2v� � t3

3!
A3v� �. . .

� A�e tAv��

Finally, X��0� � e0Av� � Iv� � v�.�

Note the following consequences of �3. 2�:
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If Av� � 0� then e tAv� � v�

If A2v� � 0� then e tAv� � v� � tAv�

If A3v� � 0� then e tAv� � v� � tAv� � t2

2!
A2v�

Now suppose v� is an eigenvector for A corresponding to the eigenvalue �; i.e. �A � �I�v� � 0�.
Then

e tAv� � e t�A��I�e t�Iv� � e t�Ie t�A��I�v� � e�te t�A��I�v�

But �A � �I�v� � 0� and it follows that e t�A��I�v� � v�. That is

If �A � �I�v� � 0� then e tAv� � e�tv�. �3. 3�

Next, suppose v� is an eigenvector for A corresponding to the eigenvalue �, and w� satisfies
�A � �I�w� � v�. Then �A � �I�2w� � �A � �I�v� � 0�. In that case,

e tAw� � e t�Ie t�A��I�w�

� e t�Ie t�A��I�w� � e�te t�A��I�w�

� e�t�w� � t�A � �I�w� �

� e�t�w� � tv��

That is,
If �A � �I�w� � v� then e tAw� � e�t�w� � tv�� �3. 4�

Finally, if v� and w� are as above, and u� satisfies �A � �I�u� � w� then
�A � �I�3u� � �A � �I�2w� � �A � �I�v� � 0� and in this case

e tAu� � e t�Ie t�A��I�u� � e�t u� � tw� � t2

2
v�

so

If �A � �I�u� � w� then e tAu� � e�t u� � tw� � t2

2
v� �3. 5�

The results �3. 3� to �3. 5� will now be used in order to find the solution for a system of first
order linear ODE’s when the matrix A does not have a full set of eigenvectors.

3.4 Repeated Eigenvalues
The matrix

A �

2 0 0

0 2 1

0 0 3

is immediately seen to have eigenvalues � � 2, 2, 3. We say that the eigenvalue � � 2 has
algebraic multiplicity 2 and � � 3 has algebraic multiplicity 1. Often, but not always, a
repeated eigenvalue like � � 2 can pose difficulties is solving the system of linear
differential equations having A as its coefficient matrix. In this example, the eigenvectors
associated with � � 2 are found as follows:
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A � 2I �

0 0 0

0 0 1

0 0 1

This tells us that x3 � 0, while x1 and x2 are free so the eigenvector associated with � � 2 is
given by

E� �

x1

x2

0

� x1

1

0

0

� x2

0

1

0

Evidently, there are two independent eigenvectors associated with � � 2,

E�1 �

1

0

0

and E�2 �

0

1

0

Then the geometric multiplicity of � � 2, the number of independent eigenvectors, is the
same as the algebraic multiplicity. For � � 3 we find

E�3 �

0

1

1

Then the general solution of the linear system X�
�
�t� � A X��t� is

X��t� � C1e2tE�1 � C2e2tE�2 � C3e3tE�3

Evidently, in this case that the fact that the eigenvalue � � 2 is repeated does not pose
a problem for solving the associated linear system of differential equations. On the other
hand, consider the matrix

A �
1 �1

1 3

whose eigenvalues are found to be � � 2, 2 but since

A � 2I �
�1 �1

1 1

there is only the single eigenvector

E�1 �
1

�1

we see that the algebraic multiplicity is 2 while the geometric multiplicity is just 1. In order to
solve the associated system of linear differential equations, we need another independent
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vector. For this purpose, we look for E�2 satisfying

�A � 2I�E�2 � E�1

Then, since E�1 is an eigenvector for � � 2, �A � 2I�E�1 � 0 and,

�A � 2I�2E�2 � �A � 2I�E�1 � 0

But

�A � 2I�2 �
�1 �1

1 1

2

�
0 0

0 0

so any choice of E�2 satisfies this equation. A simple choice for E�2 would be,

E�2 �
1

0

Then, according to �3. 3� and �3. 4�, two independent solutions to X�
�
�t� � AX��t� are given by

X�1�t� � e tAE�1 � e2tE�1

X�2�t� � e tAE�2 � e2t�E�2 � tE�1�

and the general solution to the system is

X��t� � C1
e2t

�e2t
� C2

�1 � t�e2t

te2t

We refer to E�2 as a generalized eigenvector for A.

Additional Examples
1.Consider X�

�
�t� � A X��t� where

A �

1 1 0

0 1 2

0 0 3

Since A is triangular, the eigenvalues are seen to be �1 � 3 and �2 � �3 � 1. We find the
eigenvector E�1 � �1, 2, 2�� corresponding to �1 � 3 and E�2 � �1, 0, 0�� corresponding to
�2 � �3 � 1. An additional independent vector is needed in order to form the general
solution to X�

�
�t� � A X��t�.

If we suppose E�3 satisfies

�A � I�E�3 � E�2

then

�A � I�2E�3 � �A � I�E�2 � 0�.

Note that
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�A � I�2 �

0 1 0

0 0 2

0 0 2

2

�

0 0 2

0 0 4

0 0 4

and it follows that �A � I�2E�3 � 0� if

E�3 �

x1

x2

0

for any choice of x1 and x2 as long as E�3 � E�2. If we choose E�3 � �0, 1, 0�� then
X�2�t� � e tAE�3 � e t�E�3 � tE�2� and

X�1�t� � e3t

1

2

2

, X�2�t� � e t

1

0

0

, X�3�t� � e t

t

1

0

are three linearly independent solutions to X�
�
�t� � A X��t�.

2.Consider X�
�
�t� � A X��t� where

A �

1 2 0

1 1 2

0 �1 1

This matrix has eigenvalue, � � 1 with algebraic multiplicity 3. The geometric multiplicity is 1
and the only eigenvector is E�1 � ��2, 0, 1��. In order to find two more generalized
eigenvectors, we first look for E�2 satisfying

�A � I�E�2 � E�1

so that �A � I�2E�2 � 0�.

Since

�A � I�2 �

2 0 4

0 0 0

�1 0 �2

we see that E�2 � �x1, x2, x3 �� must have x1 � 2x3 � 0 and x2 is arbitrary. The simplest choice
for E�2 is E�2 � �0, 1, 0��. To find another generalized eigenvector, we look for E�3 satisfying

�A � I�E�3 � E�2

so that �A � I�3E�3 �

�A � I�2E�2 � 0�.

In this case, �A � I�3 is the zero matrix (all zeroes) so any choice for E�3 will work as long as
it is independent of E�2 and E�1. The simplest choice is E�2 � �1, 0, 0��. Since we have chosen
E�2 and E�3 such that

17



�A � I�2E�2 � 0�

and �A � I�3E�3 � 0�

we have three independent solutions to X�
�
�t� � A X��t�. They are

X�1�t� � e tAE�1 � e tE�1

X�2�t� � e tAE�2 � e t�E�2 � tE�1�

X�3�t� � e tAE�2 � e t�E�3 � tE�2 �
1
2

t2E�1�

and the general solution for the system is

X��t� � C1e t

�2

0

1

� C2e t

�2t

1

t

� C3e t

1 � t2

t
1
2 t2

Exercises
For each of the following matrices, find the eigenvalues and find the algebraic and
geometric multiplicity of each eigenvalue. Then find the general solution to X�

�
�t� � A X��t�.

A1 �
�1 1

0 �1
A2 �

2 1 0

0 2 0

0 0 3

A3 �

3 1 0

0 3 0

0 0 2

A4 �

3 1 1

0 3 1

0 0 3

A5 �

3 0 1

0 3 0

0 0 3

A6 �

3 0 1

0 3 0

1 0 3

5. The Inhomogeneous Equation
The inhomogeneous version of the initial value problem �1. 1� is the following

d
dt

X��t� � �A�X��t� � F��t� �5. 1�

X��0� � d�

We already know the solution to the homogeneous equation, it is

X�H�t� � C1e�1tE�1 �. . .�Cne�ntE�n �5. 2�

where � i, E� i : 1 � i � n denote the eigenpairs for A. If we apply the method of variation
of parameters that was discussed in chapter 1, then we assume the particular solution for
�5. 1� is of the form

X�p�t� � C1�t�e�1tE�1 �. . .�Cn�t�e�ntE�n �5. 3�.

If we substitute �5. 3� into �5. 1� then we find

C1
� �t�e�1tE�1 �. . .�Cn

� �t�e�ntE�n � F��t�. �5. 4�

This is the analogue for systems of what we encountered in chapter 1 for a single equation.
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We can write �5. 4� in matrix notation as follows

e�1tE�1,�, e�ntE�n

C1
� �t�

�

Cn
� �t�

� F��t�.

Here �Y�t�� � e�1tE�1,�, e�ntE�n is the matrix whose j-th column is the j-th component of the

general homogeneous solution, X� j�t� � e�1tE�1. We refer to �Y�t�� as the fundamental matrix
for �5. 1�. Since the columns are independent, the fundamental matrix is invertible, hence

C1
� �t�

�

Cn
� �t�

� �Y�t���1F��t�

and

C1 �t�

�

Cn �t�

� �
0

t
�Y�s���1F��s�ds

Now �5. 3� implies

X�p�t� � �Y�t��C��t� � �Y�t�� �
0

t
�Y�s���1F��s�ds �5. 5�

We will illustrate with an example.

Consider the system

X� ��t� �
1 1

0 2
X��t� �

t

1

The eigenpairs for this matrix are E�1 �
1

0
, �1 � 1, E�2 �

1

1
, �2 � 2 and

Y�t� �
e t e2t

0 e2t

We recall now that there is a simple formula for the inverse of a 2 by 2 matrix; i.e.,

if A �
a b

c d
then A�1 � 1

det A
d �b

�c a

where det A � ad � bc. In this case, we have

19



Y�t��1 � e�3t
e2t �e2t

0 e t
�

e�t �e�t

0 e�2t

and

�
0

t
�Y�s���1F��s�ds � �

0

t se�s � e�s

e�2s
ds �

�te�t

1
2 � 1

2 e�2t

Then

X�p�t� � �Y�t��C��t� �
e t e2t

0 e2t

�te�t

1
2 � 1

2 e�2t

�
�t � 1

2 e2t � 1
2

1
2 e2t � 1

2

This is a particular solution for the inhomogeneous system. Note that X�p�0� � 0� so, if there
were initial conditions to be satisfied, these could be accommodated by choosing the
constants the homogeneous solution.

It may be worth noting that it is possible to avoid dealing with the fundamental matrix
and its inverse. Consider the simpler case where the eigenvectors of A are mutually
orthogonal. Then it follows from �5. 4� that for each j,

Cj
��t� � �je��jt E� j 	 F��t�

where �j � E� j 	 E� j
�1

. Then

Cj�t� � �j �
0

t
e��js�F��s� 	 E� j�ds �5. 6�

and finally,

X�p�t� � �1e�1t E�1 �
0

t
e��1sF��s� 	 E�1ds � � � �ne�nt E�n �

0

t
e��nsF��s� 	 E�nds

We will illustrate with an example.
Consider the system

X� ��t� �

2 3 0

3 2 0

0 0 2

X��t� �

t

0

1

This coefficient matrix has the following eigenpairs

E�1 �

�1

1

0

, �1 � �1, E�2 �

0

0

1

, �2 � 2, E�3 �

1

1

0

, �3 � 5,

Then �5. 6� implies,
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C1�t� � �1
2 �

0

t
essds � 1

2
e t � 1

2
te t � 1

2

C2�t� � �
0

t
e�2sds � 1

2
� 1

2
e�2t

Cj�t� � 1
2 �0

t
e�5ssds � 1

50
� 1

10
te�5t � 1

50
e�5t

and so the particular solution is

X�p�t� � 1
2

� 1
2

t � 1
2

e�t E�1 �
1
2

e2t � 1
2

E�1 �
1

50
e5t � 1

10
t � 1

50
E�3

Exercises

Let A1 �
1 3

0 2
, A2 �

1 1

0 2
, A3 �

1 1 0

0 2 1

0 0 3

, A4 �

1 2 0

2 1 0

0 0 2

1. Find Xp�t� d
dt

X��t� � A1X��t� �
2t

�2

2. Find Xp�t� d
dt

X��t� � A2X��t� �
t � 1

0

3. Find Xp�t� d
dt

X��t� � A3X��t� �

1 � t

1

0

4. Find Xp�t� d
dt

X��t� � A4X��t� �

0

t

e�t
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